【泵】的相关技术问答

2023-05-10 14:56:27

这是布林特节能科技的第253期文章



★1、什么叫泵


答:通常把提升液体,输送液体或使液体增加压力,即把原动力机的机械能变为液体能量的机器统称为泵。



★2、泵的分类?


答:泵的用途各不相同,根据作用原理可分为三大类:

 ①容积泵  、②叶片泵  、③其他类型泵




★3、容积泵的工作原理?举例?


答:利用工作容积周期性变化来输送液体。

例如:活塞泵、柱塞泵、隔膜泵、齿轮泵、滑板泵、螺杆泵等。




★4、叶片泵的工作原理?举例?


答:利用叶片的液体相互作用来输送液体。

例如:离心泵、混流泵、轴流泵、漩涡泵等。




★5、离心泵的工作原理?


答:离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体,由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加被叶轮排出的液体经过出室大部分速度能转换成压力能然后沿排出管路送出去。这时,叶轮进口处侧因液体的排出而形成真空或低压,吸入池中液体在液面压力(大气压)的作用下,即被压入叶轮进口。于是,旋转着的叶轮就连续不断地吸入和排出液体。




★6、离心泵的特点?


答:其特点为:转速高、体积小、重量轻、效率高、流量大、结构简单、性能平稳、容易操作和维修等特点。不足是:起动前泵内要灌满液体、粘度大对泵性能影响大,只能用于近似水的粘度液体。流量适用范围:5-20000米3/时,扬程范围在8-2800米。




★7、离心泵分几类结构形式?各自的特点和用途?


答:离心泵按其结构形式分为:立式泵和卧式泵。立式泵的特点为:占地面积小建筑投入小安装方便。缺点为:重心高,不适合无固定地脚场合运行。卧式泵特点:使用场合广泛重心低稳定性好。缺点为:占地面积大、建筑投入大、体积大、重量重。例如:立式泵为管道泵,DL多级泵、潜水电泵等卧式蹦IS泵、D型多级泵、SH型双吸泵、B型、BA型、IH型、IR型。 按扬程流量的要求并根据叶轮结构和组成级数分为:


①、单级单吸泵:泵为一只叶轮,叶轮上一个吸入口。一般流量范围:5.5-2000米3/时,扬程在:8-150米,特点是:流量小、扬程低。


②、单级双吸泵:泵为一只叶轮,叶轮上二级入口。一般流量范围:120-20000米3/时,扬程在:10-110米,流量大、扬程低。


②、单吸多级泵:泵为多个叶轮,第一个叶轮上一个吸入口,第一个叶轮排出室为第二叶轮吸入口,以此类推。一般流量范围为:5-200米3/时,扬程在20-240米,特点是流量小,扬程高。




★8、什么叫管道泵?其结构特点?


答:管道泵是单吸单级离心泵的一种,属立式结构,因其进出口在同一直线上,且进出口口径相同,仿似一段管道,可安装在管道的任何位置故取名为管道泵。


结构特点:为单吸单级离心泵,进出口相同并在同一直线上,和轴中心线成直交,为立式泵。




★9、ISG型单级单吸立式离心泵的结构特点及优越性为:


第一、泵为立式结构,电机盖与泵盖联体设计,外形紧凑美观,且占地面积小,建筑投入低,如加上防护罩可置于户外使用。


第二、泵进出口口径相同,且位于同一中心线上,可象阀门一样直接安装在广岛上,安装极为简便。


第三、巧妙的地脚设计,方便了泵的安装稳固。


第四、泵轴为电机的加长轴,解决了常规离心泵轴与电机轴采用连轴器传动而带来严重的振动问题,泵轴表面经镀铬处理,大大延长了泵的使用寿命。


第五、叶轮直接安装在电机加长轴上,泵在运行时无噪声,电机轴承采用低噪声轴承,从而保证整机运行时噪声很低,大大改善了使用环境。


第六、轴封采用机械密封,解决了常规离心泵调料密封带来的严重渗漏问题,密封的静环和动环采用碳化硅制成,增强了密封的使用寿命,确保了工作场地干燥整洁。


第七、泵盖上留有放气孔,泵体下侧和两侧法兰上均设有放水孔及压力表孔,能确保泵的正常使用和维护。


第八、独特的结构以至无需拆下管道系统,只要拆下泵盖螺母即可进行检修,检修极为方便。




★10、管道泵分几类及其相互之间的共同点?及各自用途?


答:①、ISG型单级单吸离心式清水管道泵。用于工业和生活给排水,高层建筑增压、送水、采暖、制冷空调循环、工业管道增压输送、清洗,给水设备及锅炉配套。使用温度≤80℃。


②、IRG型单级单吸热水管道泵用于冶金、化工、纺织、木材加工、造纸以及饭店、浴室、宾馆等部门锅炉高温热水增压循环输送,使用温度≤120℃。


③、IHG型单级单吸化工管道泵用于轻纺、石油、化工、医药、卫生、食品、炼油等工业输送化学腐蚀性液体。使用温度≤100℃。是替代常规化工泵的理想产品。


④、YG型单级单吸管道油泵。是常规输油泵的理想产品。适用于油库、炼油厂、化工等行业以及企事业单位动力部门输送油及易燃、易爆液体,使用温度≤120℃以下。


⑤、GRG、GHG、GYG型单级单吸高温管道泵高温型管道泵是在普通型基础上设计增加水冷式冷却装置而形成的,使用温度≤185℃以下,使用范围和普通型相似。


GRG为高温热水泵,GHG为高温化工管道泵,GYG为高温管道油泵。




★11、泵的基本参数?


答:流量Q(m3/h),扬程H(m),转速n(r/min),功率(功率和配用功率)Pa(kw),效率h(%),气蚀余量(NPSH)r(m),进出口径φ(mm),叶轮直径D(mm),泵重量W(kg)。




★12、什么叫流量?用什么字母表示?用几种计量单位?如何换算?如何换算成重量及公式?


答:单位时间内排出液体的体积叫流量。流量用Q表示。

计量单位:立方米/小时(m3/h),升/分钟(L/min),升/秒(L/s)


1L/s=3.6m3/h=0.06m3/min=60L/min

G=Qr    G为重量    r为液体比重


例:某台泵流量为50m3/h,求抽水时每小时重量?水的比重r为1000公斤/立方米lg/cm3


解:G=Qr=50×1000(m3/h.   kg/m3)=50000kg/h=50T/h




★13、什么叫扬程?用什么字母表示?用什么计量单位?和压力的换算及公式?


答:单位重量液体通过泵后所获得的能量叫扬程。


泵的扬程包括吸程在内,近似为泵出口和入口压力差。扬程用“H”表示,单位为米(m)。泵的压力用P表示,单位为Mpa(兆帕)、公斤(Kg)/cm,H=P/r


如P为1公斤/cmH=P/r=(1公斤/cm)/(1000公斤/m=(10000公斤/m)/(1000公斤/m)=10m61Mpa=10公斤(Kg)/cm   H=(P2-P1)r(P2-出口压力)




★14、什么叫泵的效率?公式如何?


答:指泵的有效功率和轴功率之比。


有效功率指泵的扬程×流量×比重(重量流量)Ne=rQH  单位为千瓦


1千瓦=102公斤米/秒    1千瓦=75/102马力


轴功率及离心泵功率,指原动机传给泵的功率,即输入功率。单位为千瓦


n=Ne/N=rQH/102N   r为吨/立方米   Q为升/秒   H为米


n=Ne/N=rQH/102×3.6N   r为吨/立方米   Q为立方米/小时   H为米




★15、什么叫额定流量,额定转速,额定扬程?


答:根据设定泵的工作性能参数进行水泵设计,而达到的最佳性能,定为泵的额定性能参数。通常指产品目录样本上所指定的参数值。


如:50-125流量12.5m3/h为额定流量,扬程20m为额定扬程,转速2900转/分为额定转速。




★16、什么叫气蚀余量?什么叫吸程?各自计量单位及表示字母?


答:泵在工作时液体在叶轮的进口处因一定真空压力下会产生液体汽体,汽化的气泡在液体质点的撞击运动下叶轮等金属表面产生剥落,从而破坏叶轮等金属,此时真空压力叫汽化压力,气蚀余量是指在泵吸入口处单位重量液全所具有的超过汽化压力的富余能量。单位为米液柱,用(NPSH)r表示。


吸程即为必需气蚀余量Δ/h:即泵允许吸液体的真空度,亦即泵允许几何安装高度。单位用米。吸程=标准大气压(10.33米)--气蚀余量--安全量(0.5)标准大气压能压上管路真空高度10.33米


例如:某泵必需气蚀余量为4.0米,求吸程Δh


解:Δh=10.33-4.0-0.5=5.67米




★17、什么是泵的特性曲线?包括几方面?有何作用?


答:通常把表示主要性能参数之间关系的曲线或特性曲线,称为离心泵的性能曲线或特性曲线,事实上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。


特性曲线包括:流量-扬程曲线(Q-H),流量-功率曲线(Q-N),流量-效率曲线(Q-η),流量-气蚀余量曲线(Q-(NPSH)r)。


性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值,这一组参数称为工作状态,简称工况或工况点、离心泵取高效率点工况称为最佳工况点、最佳工况点一般为设计工况点、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。




★18、什么是泵的全性能测试台?


答:能通过精密仪器准确测试出泵的全部性能参数的设备为全性能测试台,国家标准精度为B级。

流量用精密锅轮流量计表测定。

扬程用精密压力表测定。

吸程用精密真空表测定。

功率用精密轴功率机测定。

转速用转速表测定。效率根据实测值:η=Rqn/102N计算。

性能曲线按实测值在坐标上绘出。




★19、泵轴功率和电机配备功率之间关系


答:泵轴功率是设计上原动机传给泵的功率,在实际工作时,其工况点会变化,因此原动机传给泵的功率应有一定余量,另电机输出功率因功率因数轴关系,因此经验做法是电机配备功率大于泵轴功率。


轴功率:

0.1-0.55KW    1.3-1.5倍

0.75-2.2KW    1.2-1.4倍

3.0-7.5KW     1.15-1.25倍

11KW以上     1.1-1.15倍


并根据国家标准Y系列电机功率规格配。




★20、型号意义:ISG50-160IA(B)?


答:ISG50-160(I)A(B)  其中:

I:采用ISO2858国际标准和IS型单级单吸离心泵性能参数的单级单吸离心泵。


S:S清水型


G:管道式


50:进出口公称直径(口径)mm(50mm)


160:泵叶轮名义尺寸mm(指叶轮直径近似160mm)


I:I为流量分类(不带I流量12.5m3/h,带I流量25m3/h)


A(B):为达到泵效率不大时,同时降低流量扬程轴功率的工况。


A:叶轮第一次切割


B:叶轮第二次切割




★什么是汽蚀现象:


答1. 单位泵中压力最低处在叶轮进口附近,当此处压力降低到当时温度的饱和气压时,液体就开始汽化,大量气泡从液体中逸出。当气泡随液体流至泵的高压区时,在外压的作用下,气泡骤然凝缩为液体。这时气泡周围的液体,即以极高的速度冲向这原来时气泡的空间,并产生很大的水力冲击。由于每秒钟有许多气泡凝缩,于是就产生许多次很大的冲击压力。在这个连续的局部冲击负荷作用下,泵中过流零部件表面逐渐疲劳破坏,出现很多剥蚀的麻点,随后连片呈蜂窝状,最终出现剥落的现象。除了冲击造成的损坏外,液体在汽化的同时,还会析出溶于其中的氧气,使过流零部件氧化而腐蚀。


这种由机械剥蚀和化学腐蚀共同作用使过流零部件被破坏的现象就是汽蚀现象。


答2. 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。


答3. 气蚀是指当贮槽叶面的压力一定时,如叶轮中心的压力降低到等于被输送液体当前温度下的饱和蒸汽压时,叶轮进口处的液体会出现大量的气泡,这些气泡随液体进入高压区后又迅速被压碎而凝结,致使气泡所在空间形成真空,周围的液体质点以极大的速度冲向气泡中心,造成瞬间冲击压力,从而使得叶轮部分很快损坏,同时伴有泵体震动,发出噪音,泵的流量,扬程和效率明显下降。这种现象叫气蚀现象。


答4. 如果是水泵,应该降低泵与水面之间的高度,液压缸在工作过程中在活塞和导向套之间的液体中混入了一定量的空气。随着压力的逐渐升高,液体当中的气体会变成气泡,当压力升高到某一极限值时,这些气泡在高压的作用下就会发生破裂,从而将高温、高压的气体迅速作用到零件的表面上,导致液压缸产生气蚀,造成零件的腐蚀性损坏。这种现象称为气蚀现象。 




★ 喷射泵与汽蚀


喷射泵是利用流体流动是能量的转变来达到输送的目的。利用它可输送液体,也可输送气体。在化工生产中,常将蒸汽作为喷射泵的工作流体,利用它来抽真空,使设备中产生负压。因此常将它称为蒸汽喷射泵。 


工作原理:工作水蒸汽在高压下以很高的流速从喷嘴中喷出,将低压气体或蒸汽带入高速的流体中,吸入的气体与水蒸汽混合后进入扩大管,速率逐渐降低,静压力因而升高,最后经排出口排出。


对喷射泵进行混合液流量大小及改变喉嘴距长短两种工况时。在调节混合液流量的大小时,动力液的流量也相应变化,动力液通过喷嘴时的速度也发生变化。从而造成随混合液流量的减少,气蚀现象由强变弱直至完全消除。由三种不同的喉嘴距工作经验得出,增加喉嘴距,可使喷嘴与喉管间的环形过流面积增大,等量流体通过较大面积时的流动速度将更低,压力将更高,气蚀现象就更不易产生。




★ 泵的汽蚀现象分析及管理


一、 汽蚀现象


液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 


泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 


 二、泵汽蚀基本关系式


泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为


NPSHc≤NPSHr≤[NPSH]≤NPSHa 

NPSHa=NPSHr(NPSHc)——泵开始汽蚀 

NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 


式中 NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; 


NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; 


NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; 


[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。


三、装置汽蚀余量的计算


NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 


四、防止发生汽蚀的措施 


欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 


1.减小几何吸上高度hg(或增加几何倒灌高度); 


2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 


3.防止长时间在大流量下运行; 


4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 


5.泵发生汽蚀时,应把流量调小或降速运行; 


6.泵吸水池的情况对泵汽蚀有重要影响; 


7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料。




★ 泵的类型原理|汽蚀现象 |水泵汽蚀基本关系式


答:  一、水泵类型原理定义:通常把提升液体、输送液体或使液体增加压力 , 即把原动机的机械能变为液体能量从而达到抽送液体目的的机器统称为泵。 


二、水泵的工作原理: 


1 容积式泵 _ 利用工作腔容积周期变化来输送液体。 

2 、叶片泵 _ 利用叶片和液体相互作用来输送液体。 


三、泵的具体用途:泵的不同用途、不同的输送液体介质、不同 流量、扬程的范围,泵的结构型式当然也不一样,材料也不同,概括起来,大致可以分为: 城市供水 、污水系统 、土木、建筑系统 、农业水利系统  、电站系统 、化工系统  、石油工业系统 、矿山冶金系统  、轻工业系统  、船舶系统 


四 汽蚀现象


液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象 称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 


水泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击 频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 


在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 


五 水泵汽蚀基本关系式 


水泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和 吸入装置双方来考虑。泵汽蚀的基本关系式为  


NPSHc≤NPSHr≤[NPSH]≤NPSHa

NPSHa=NPSHr(NPSHc)—— 泵开始汽蚀

NPSHa NPSHa>NPSHr(NPSHc)—— 泵无汽蚀 

式中 NPSHa—— 装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; 

NPSHr—— 泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; 

NPSHc—— 临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; 

[NPSH]—— 许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取 [NPSH]= ( 1.1 ~ 1.5 ) NPSHc 。

六 防止汽蚀措施 


欲防止发生汽蚀必须提高 NPSHa ,使 NPSHa>NPSHr 可防止发生汽蚀的措施如下: 


1 .减小几何吸上高度 hg (或增加几何倒灌高度); 


2 .减小吸入损失 hc ,为此可以设法增加管径,尽量减小管路长度,弯头和附件等;


3 .防止长时间在大流量下运行; 


4 .在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 


5 .水泵发生汽蚀时,应把流量调小或降速运行; 


6 .水泵吸水池的情况对泵汽蚀有重要影响; 


7 .对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料




★ 喷射泵的分类、结构和工作原理


一、喷射泵的分类


按照工作流体与引射流体(或固体)的不同,喷射泵可作如下分类:


1)用液体抽吸液体的喷射泵,如舱底水喷射泵;

2)用液体抽吸气(汽)体的喷射泵,如射水真空泵;

3)抽吸有流动性的固体与液体混合物的喷射泵;如用于挖泥的泥浆泵;

4)用气(汽)体抽吸液体的喷射泵,如锅炉的注水器;

5)用气(汽)体抽吸气(汽)体的喷射泵,如空气喷射器。

工作流体通常是水、水蒸汽和压缩空气等。这里只对液体抽吸液体的水喷射泵作一般介绍。


二、喷射泵的结构和工作原理


喷嘴是一段平滑而急剧收缩的锥管,一端与工作水入口管相连,另一端插于吸入室内。与吸入室连接的是由圆锥形管(喉管)与圆柱形管组成的混合室。截面之间扩张的扩压管前端接混合室,后端与排出管相连。


当具有一定压力(0.3~21.5MPa)的工作水流经喷嘴时,将压力能转化为动能,从嘴口高速(可达25~50m/s)喷出,并带走喷嘴口周围(即吸入室)的空气,使吸入室产生低压,经吸入管7吸入的被抽吸的液体随高速流动的工作水一起进入混合室6,在此,两种液体互相碰撞进行动量交换,以同样流速进入扩压管5,把部分动能转换为压力能后从扩压管排出。可见,只要工作水连续供入,被抽吸的液体就可连续地被泵输送。


喷射泵的性能与特点


1.水喷射泵的性能

1)当其他条件不变时,泵的排出压力pc降低,泵的引射流量增加,直至泵发生汽蚀时,引射流量就不在增加了。应当指出,喷射泵产生汽蚀时,一般不会使泵的工作完全破坏,只是阻碍引射流量的增加而已。


2)当其他条件不变时,泵的吸入压力pb降低,引射流量减少。当pb降低至某值时,泵的引射流量就会因发生汽蚀而急剧减少。


3)当其他条件不变时,工作水的压力Fa(或工作水流量减少)降低,引射流量迅速减少。反之,Fa(或工作水流量)增加,则引射流量迅速增加,但当引射流量的增大导致泵发生汽蚀时,引射流量却不再pa的增加而增加,而泵的效率却随pa的增加而降低。


4)当工作流体或引射流体的温度增高时,泵发生汽蚀的可能性增大,泵的引射流量可能因此而急剧降低。


2.喷射泵的特点

1)效率低。这是因为喷射泵工作过程中水力损失很大。偏离最佳工况时,效率更低。


2)结构简单,体积小,价格低廉。


3)没有运动部件,工作可靠,噪声很小,使用寿命长,平时无需维护修理。


4)起动迅速,可造就较高的真空度,自吸能力强。


5)可输送含固体杂质的污浊液体,即使被水浸没也能正常工作。

水喷射泵主要用作应急舱底水泵,偶尔短时间工作的货舱排水泵和真空泵。


三、喷射泵的管理


1.管理中要防止排出管路阻塞和止回阀卡死等可能导致排出压力升高,以提高引射流量。


2.喷嘴门径因磨损而过分增大时,工作水的耗能增加,泵的效率降低,必要时应予换新。


3.喷嘴出口截面距混合室进口截面的趴离称喉嘴距(用Lc表示),存在一个最佳值,通常由试验确定。拆装时该距离不宜随便变动。Lc太大,则被引射进入混合室的流量太多,以至不能将其增斥到要求的排出压力,混合室外周出现倒流;Lc过小则使引射流量不足。或混合室的有效长度缩短,而造成出口速度分布不匀。可见,Lc过长或过短,都会使能量损失增加。


4.安装时要注意保证喷嘴、混合室和扩压管三者的同心度,特别是喷嘴和混合室的同心度,否则会产生较大的能量损失,甚至丧失抽吸能力。




★ 如何选择泵:


答: 现在微型泵选型中,如微型真空泵,微型气泵,微型气体采样泵,微型气体循环泵,微型抽气泵,微型吸气泵,微型打气泵,微型充气泵,微型高压气泵等,常常要涉及到这三个概念。 


一、简单得说,这三个概念分别对应气体的稀薄、正常、浓密状态。 


常压:指一个大气压,即我们平常生活的这个大气层产生的气体压力。一个标准大气压为101325 Pa(帕,帕斯卡-常用压强单位)。100,000Pa=100KPa,所以“一个标准大气压”我们也常用100KPa或101KPa表示。每个地方由于地理位置、海拔高度、温度等不同,当地的实际大气压跟标准大气压也不相等,但出于简化目的,有时候可以近似认为常压就是一个标准大气压,即100KPa; 


负压:就是指比常压的气压低的气体状态,也就是我们常说的“真空”。例如,用管子喝饮料时,管子里就是负压;用来挂东西的吸盘内部,也是负压。 


正压:就是指比常压的气压高的气体状态。例如,给自行车或汽车轮胎打气时,打气筒或打气泵的出气端产生的就是正压。 


二、科研、生物工程、自动控制、环保、水处理等众多领域应用中,常常要进行气体采样、气体循环、物体吸附等,这时候就要用到真空泵。它的主要参数有真空度、流量等。


(一)、“真空度”一般指泵工作时,能达到的极限压力,也即,它能将密闭容器内的气体抽走后,剩下气体的稀薄程度。 


工业上,极限压力表示可以有两种,一种是“绝对压力”,即以“绝对的真空”(理论上才能达到的绝对真空,什么物质都没有)为零位,标出的数值都是正值,这个数字越小,越接近绝对真空,也就是真空度越高。比如我们有一款“高真空”微型真空泵VCH1028。它的极限压力为10KPa(0.01MPa),在微型真空泵里,就属于真空度很高的了。 


另一种是“相对压力”,即以大气压作为零位,低于大气压的用负值表示,所以叫“负压”。这个负值的绝对值越大,则真空度越高。比如我们有一款“高负压微型真空泵”PH2506B的负压为-75KPa(-0.075MPa),就没有VCH1028高(VCH是-90KPa(-0.09Mpa))。所以,相应的PH2506B的抽吸力也没有VCH强。 


国际真空行业通用的、也是最科学的是用“绝对压力”标识;但因为测量相对压力的方法简便、测量仪器普遍(如一般的真空表都是相对压力表),所以国内习惯用“相对压力”来标识。 


二者关系:相对压力=绝对压力-当地大气压。 


如VCH1028的绝对压力:10Kpa,它的相对压力=10-100=-90Kpa(-0.09MPa)。 


(二)、科研、实验室、医疗等领域中,常常有气体增压的应用,如:往本身有正压的容器内打气,或系统内阻力较大,需要泵克服阻力送气等。这时候,就需要泵能输出比大气压高的正压,通常用“相对压力”表示。我们的高压微型气泵、微型真空泵,最大可以输出>100Kpa(0.1MPa)的正压,本身属于干式真空泵,不需要真空泵油及润滑油,不污染工作介质,可连续24小时运转,抽排气端都可堵塞,就特别适合这些场合。 


综合举例:(不是特别严谨,只是为了说明三者的关系) 


假设密闭容器内气体压力为常压,即表示内有100个气体分子,用负压为-90Kpa的VCH1028最后能抽走90个,剩下10个,则此时容器内负压为-90Kpa;换成 PH2506B 就只能抽走75个,剩下25个,相应的容器内负压为-75Kpa。 


如果用PCF5015N往这个容器打气,则最后容器内有200个气体分子,用绝对压力表示为200Kpa,用相对压力(正压)则为100Kpa。




★ 泵的选型依据?


答: 要确定泵的用途和性能方能选择泵型。这种选择首先得从选择泵的种类和形式开始,那么以什么原则来选泵呢?依据又是什么?


一. 选型原则


1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 


2、必须满足介质特性的要求。对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵、隔膜泵、屏蔽泵对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。


3、机械方面可靠性高、噪声低、振动小。 


4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。


5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。因此除以下情况外,应尽可能选用离心泵: 


有计量要求时,选用计量泵扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可 选用旋涡泵.扬程很低,流量很大时,可选用轴流泵和混流泵。介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺杆泵)介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。


二 水泵选型一般程序


1、根据装置的布置、地形条件、水位条件、运转条件、经济方案比较等多方面因素.考虑选择卧式、立式和其它型式(管道式、直角式、变角式、转角式、平行式、垂直式、直立式、潜水式、便拆式、液下式、无堵塞式、自吸式、齿轮式、充油式、充水温式)。卧式泵拆卸装配方便,易管理、但体积大,价格较贵,需很大占地面积;立式泵很多情况下叶轮淹没在水中,任何时候可以启动,便于自动盍或远程控制,并且紧凑,安装面积小,价格较便宜。


2 、根据液体介质性质,确定清水泵,热水泵还油泵、化工泵或耐腐蚀泵或杂质泵,或者采用不堵塞泵。 安装在爆炸区域的泵,应根据爆炸区域等级,采用防爆电动机。


3 、振动量分为:气动、电动(电动分为 220v 电压和 380v 电压)。


4 、根据流量大小,选单吸泵还是双吸泵:根据扬程高低,选单吸泵还是多吸泵,高转速泵还是低转速泵(空调泵)、多级泵效率比单级泵低,当选单级泵和多级泵同样都能用时,宜选用单级泵。


5、 确定泵的具体型号,采用什么系列的泵选用后,就可按最大流量,放5%——10% 余量后的扬程这两个性能主要参数,在型谱图或系列特性曲线上确定具体型号。 利用泵特性曲线,在横坐标上找到所需流量值,在纵坐标上找到所需扬程值,从两值分别向上和向右引垂线或水平线,两线交点正好落在特性曲线上,则该泵就是要选的泵,但是这种理想情况一般不会很少,通常会碰上下列几种情况: 


A 、第一种:交点在特性曲线上方,这说明流量满足要求,但扬程不够,此时,若扬程相差不多,或相差 5% 左右,仍可选用,若扬程相差很多,则选扬程较大的泵。或设法减小管路阻力损失。 


B 、第二种:交点在特性曲线下方,在泵特性曲线扇状梯形范围内 ,就初步定下此型号,然后根据扬程相差多少,来决定是否切割叶轮直径,若扬程相差很小,就不切割,若扬程相差很大,就按所需 Q 、 H 、,根据其 ns 和切割公式,切割叶轮直径,若交点不落在扇状梯形范围内,应选扬程较小的泵。 选泵时,有时须考虑生产工艺要求,选用不同形状 Q-H 特性曲线。 




★ 离心泵气蚀的概念


从本质上看,离心泵气蚀现象是一种流体力学的空化作用,与旋涡有关。它是指流体在运动过程中压力降至其临界压力(一般为饱和蒸汽压)之下时,局部地方的流体发生汽化,产生微小空泡团。该空泡团发育增大至一定程度后,在外部因素的影响(气体溶解、蒸汽凝结等)下溃灭而消失,在局部地方引发水锤作用,其应力可达到数千个大气压。显然这种作用具有破坏性,从宏观结果上看,气蚀现象使得流道表面受到浸蚀破坏(一种持续的高频打击破坏),引发振动,产生噪音;在严重时出现断裂流动,形成流道阻塞,造成水泵性能的下降。


从上述表述可知,气蚀现象是由于流场中出现的最小绝对压力引起,哪里的绝对压力小,哪里就容易发生气蚀。因而,控制最小绝对压力即可控制空化作用,有效地减少气蚀现象的发生。


水泵是一种给流体增加能量的机器。流体经叶轮向外流出,其压力一般而言是增加的,因而在水泵中流体出现最小压力的地方只能是叶轮叶片进口处附近。这样一来,确保流体在叶轮叶片进口处具有足够的绝对压力,便成为避免水泵发生气蚀的关键。


1 水泵的气蚀余量NPSH


由于叶轮机械中流体运动的复杂性,很难从理论上计算出流场中何处可能出现气蚀,再加上气蚀现象不仅仅取决于流体的流动特性,还取决于流体本身的热力学性质,所以,更难于从理论上提出气蚀发生的判据。因此,在实践中往往是采用经验加实验的办法来提出气蚀判据。水泵的气蚀余量概念即是其中的重要判据之一,它既具有一定的理论意义,又是产品验收的标准之一。


水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSHA,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSHR,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。要确保水泵在运行中不气蚀,必须在安装上保证NPSHA≥K×NPSHR,(K为安全裕量),而后者由制造厂所保证。从这个意义上看,降低水泵气蚀余量的意义在于保证水泵的绝对提水高度,满足使用要求。


2 NPSHR的分析


显然,NPSHR的大小取决与泵吸入口出流体运动的能量损失。由于流程较短,这种损失主要体现为流动局部损失。有如下几方面的因素:


(1)泵吸入口到叶轮进口流道收缩,流速增加而产生的压力损失以及流体运动自轴向变为径向,转弯处流场不均匀而产生压力损失;


(2)流速变化引起的流动损失,体现为压力降低;


(3)流体绕流叶片进口缘产生的能量损失;


(4)叶片厚度排挤作用使得进口速度增加而产生压力损失;


(5)非设计工况下运行流体在叶片前缘产生的冲击损失;


(6)叶轮铸造质量不佳、流道表面不平所致流动粘性损失。


在上面几方面的因素之中,难以完全避免的是前两项;而后几项则可以通过改进设计及制造质量来使之减少。这就要求设计者在设计时应力求使得从泵进口到叶轮进口这一段流道尽可能地合乎流体运动之流线,以减少这一段流动的压力损失;而对一台现有的产品泵来说,分析其气蚀性能亦应当从分析其进口流道的流动损失着手。


3 某离心泵的气蚀分析


现在对前面所提到的离心泵的气蚀问题作些定性分析。该泵的气蚀余量偏大,其原因可以认为是由于泵吸入口处存在的过大的压力损失所引起的。但该泵在小流量时气蚀余量大,这与通常检测结果不一样,可能与设计和制造有关。小流量时的气蚀余量增加,可认为是在小流量时液流入口角增加,使得叶片入口正冲角过大,从而脱流过大,产生了很大的压力损失;而大流量时气蚀余量增加,更主要的则是由于流速增加使得损失增加所致。


从设计和制造两方面来看,除去间隙气蚀的原因外,叶片进口安放角偏小(设计偏小或铸造时偏小),叶片入口厚度大,叶片表面铸造质量不佳可能是该型号泵气蚀余量大的主要原因。


4 改进措施


对本例泵来说,可以采取以下一些适当措施来减少气蚀发生的可能性:


(1)若有可能的话,可将叶片进口边前移,即在进口边处粘结上一块,使得流体及早接触叶片获得能量,避免出现低于临界压力的情况发生。


(2)清理叶轮入口流道,尽量使其光滑平坦,提高进口光洁度,减少流动阻力,降低压力损失。


(3)打磨叶片头部,削尖,以减少进口冲击损失,降低进口冲角的敏感性。


(4)如果间隙气蚀严重,可采用在叶轮上打平衡孔的办法来减少泄漏流速,以减轻气蚀程度。




★有关泵的相关问题


答1、泵的分类有哪些?


答:根据工作的原理不同,可以分为以下几种:


⑴叶片泵 依靠泵内高速旋转的叶轮来输送液体,如离心泵、轴流泵等。

1 ⑵容积泵 依靠泵内工作容积的变化而吸入或排出液体并提高液体的压力能,如活塞式泵,回转式齿轮泵等。 

⑶喷射泵 利用工作流体(液体或气体)的能量来输送液体,如水喷射泵,蒸汽喷射泵等。


2、离心泵的装置有哪些?


答:离心泵装置由离心泵,电动机,吸入管,排出管和阀门等组成,我们公司是机泵一体,这样减少面积30%。


3、离心泵的工作原理是什么?


答:开泵前,吸入管和泵内必须充满液体。开泵后,叶轮高速旋转,其中的液体随着叶片一起旋转,在离心力的作用下,飞离叶轮向外射出,射出的液体在泵壳扩散室内速度逐渐变慢,压力逐渐增加,然后从泵出口,排出管流出。此时,在叶片中心处由于液体被甩向周围而形成既没有空气又没有液体的真空低压区,液池中的液体在池面大气压的作用下,经吸入管流入泵内,液体就是这样连续不断地从液池中被抽吸上来又连续不断地从排出管流出。


4、什么叫流量?单位是什么?


答:流量q是指单位时间内从泵出口排出并进入管路的液体体积。流量的单位为m /h、m /s或L/s。 


5、什么叫扬程?单位是什么?


答:单位质量液体通过泵所增加的能量,也就是泵所产生的总水头,称为扬程。扬程的单位为m。 


6、什么叫汽蚀?


答:汽蚀是液体汽化造成的对泵过流零部件(液体经过泵时所接触到的零部件)的破坏现象。 


7、什么是汽蚀现象?


答:泵中压力最低处在叶轮进口附近,当此处压力降低到当时温度的饱和气压时,液体就开始汽化,大量气泡从液体中逸出。当气泡随液体流至泵的高压区时,在外压的作用下,气泡骤然凝缩为液体。这时气泡周围的液体,即以极高的速度冲向这原来时气泡的空间,并产生很大的水力冲击。由于每秒钟有许多气泡凝缩,于是就产生许多次很大的冲击压力。在这个连续的局部冲击负荷作用下,泵中过流零部件表面逐渐疲劳破坏,出现很多剥蚀的麻点,随后连片呈蜂窝状,最终出现剥落的现象。除了冲击造成的损坏外,液体在汽化的同时,还会析出溶于其中的氧气,使过流零部件氧化而腐蚀。这种由机械剥蚀和化学腐蚀共同作用使过流零部件被破坏的现象就是汽蚀现象。 


8、离心泵的分类有哪些?


答:㈠按离心泵的用途可分为:⑴清水泵;⑵杂质泵;⑶耐酸泵。

㈡按叶轮结构可分为:⑴闭式叶轮离心泵;⑵开式叶轮离心泵;⑶半开式离心泵。

㈢按叶轮数目可分为:⑴单级离心泵;⑵多级离心泵。

㈣按泵吸入的方式可分为:⑴单吸式离心泵;⑵双吸式离心泵。

㈤按泵压出的方式分为:⑴蜗壳式离心泵;⑵导流式离心泵;

㈥按扬程分为:⑴低压泵;⑵中压泵;⑶高压泵。

㈦按泵轴位置分为:⑴立式泵;⑵卧式泵。 


9、离心泵平衡轴向力的办法有那些?


答:⑴单级泵轴向力的平衡主要采用开平衡孔,设置平衡管,采用双吸叶轮三种办法。


⑵多级泵轴向力的平衡主要采用叶轮对称布置和采用平衡盘、平衡鼓等方法。




延伸阅读


泵的选择及维修知识大汇总,你了解多少?

泵是用来提升液体、输送液体或使液体增加压力 , 即把原动机的机械能变为液体能量从而达到抽送液体目的的机器。该设备广泛应用于化工石油行业,农业工业生产,国防电力制造业等领域。可是在应用同时也带来很多问题,比如说泵的选择,故障及维修。接下来小七跟大家探讨一下泵的相关知识。




泵的选择应用

介质依据




不同的行业,所运输的介质也不同,对泵的需求也不同,因此选择的正确泵型对整个工艺流程有重要的作用。


1、对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵,隔膜泵,屏蔽泵。


2、对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。


3、对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。


4、机械方面要求可靠性高、噪声低、振动小。


5、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低


例如离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。


因此除以下情况外,应尽可能选用离心泵:


    a、有计量要求时,选用计量泵;


    b、扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用涡旋泵;


    c、扬程很低,流量很大时,可选用轴流泵和混流泵;


    d、介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺旋泵);


    e、介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵;


    f、对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。



性能参数




泵选择时,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等。


    1、流量是选泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。 如设计院工艺设计中能算出泵正常、最小、最大三种流量。选择泵时,以最大流量为依据,兼顾正常流量,在没有最大流量时,通常可取正常流量的1.1倍作为最大流量。


    2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5%—10%余量后扬程来选型。


    3、液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c密度d,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,有效气蚀余量计算和合适泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。


    4、 装置系统的管路布置条件指的是送液高度送液距离送液走向,吸如侧最低液面,排出侧最高液面等一些数据和管道规格及其长度、材料、管件规格、数量等,以便进行系梳扬程计算和汽蚀余量的校核。


    5、 操作条件的内容很多,如液体的操作T饱和蒸汽力P、吸入侧压力PS(绝对)、排出侧容器压力PZ、海拔高度、环境温度操作是间隙的还是连续的、泵的位置是固定的还是可移的。



场地布置




地理条件对厂址及工艺的选择有重要作用,同时也会影响到工艺中各种设备的选择。根据装置的布置、地形条件、水位条件、运转条件,确定选择卧式、立式和其它型式(管道式、潜水式、液下式、无堵塞式、自吸式、齿轮式等)的泵。




常见故障及排除技巧

1
泵卡住




处理方法:用手盘动联轴器检查,必要时解体检查,消除动静部分故障。




2
泵排液效率低




原因1:灌泵不足,或泵内气体未排完;


处理方法:重新灌泵;


原因2: 泵转向不对;


处理方法:检查旋转方向;


原因3:泵转速太低:


处理方法:检查转速,提高转速;


原因4:滤网堵塞,底阀不灵;


处理方法:检查滤网,消除杂物;


原因5:吸上高度太高,或吸液槽出现真空;


处理方法:减低吸上高度;检查吸液槽压力。




3
泵排液后中断




原因1:吸入管路漏气。


处理方法:检查吸入侧管道连接处及填料函密封情况;


原因2:灌泵时吸入侧气体未排完;


处理方法:要求重新灌泵;


原因3:吸入侧突然被异物堵住


处理方法:停泵处理异物;


原因4:吸入大量气体;


处理方法:检查吸入口有否旋涡,淹没深度是否太浅。




4
流量不足




原因1:系统静扬程增加。


处理方法:检查液体高度和系统压;阻力损失增加。


原因2:阻力损失增加;


处理方法:检查管路及止逆阀等障碍;


原因3:壳体和叶轮耐磨环磨损过大;


处理方法:更换或修理耐磨环及叶轮;


原因4:漏液;


处理方法:检查轴封等部位,确定其密封性是否良好;


原因5:泵叶轮堵塞、磨损、腐蚀;


处理方法:清洗、检查、调换。




5
扬程不够




原因1:叶轮装反(双吸轮)。


处理方法:检查叶轮是否符合实际情况;

原因2:液体密度、粘度与设计条件不符;


处理方法:检查液体的物理性质;


原因3 :操作时流量太大;


处理方法:减少流量。




6
泵振动或异常声响




原因1:振动频率为0~40%工作转速。过大的轴承间隙,轴瓦松动,油内有杂质,油质(粘度、温度)不良,因空气或工艺液体使油起泡,润滑不良,轴承损坏。


处理方法:检查后,采取相应措施,如调整轴承间隙,清除油中杂质,更换新油;
  
原因2:振动频率为60%-100%工作转速,或者是密封间隙过大,护圈松动,密封磨损。


处理方法:检查、调整或更换密封;


原因3:振动频率为2倍工作转速,不对中,联轴器松动,密封装置摩擦,壳体变形,轴承损坏,支承共振,推力轴承损坏,轴弯曲,不良的配合。


处理方法:检查,采取相应措施,修理、调整或更换;
  
原因4:振动频率为n倍工作转速。压力脉动,不对中心,壳体变形,密封摩擦,支座或基础共振,管路、机器共振;加固基础或管路;振动频率非常高。轴磨擦,密封、轴承、不精密、轴承抖动,不良的收缩配合等。
 



7
轴承发热




原因1:轴承瓦块刮研不合要求。


处理方法:重新修理轴承瓦块或更换。
  
原因2;轴承间隙过小。


处理方法:重新调整轴承间隙或刮研;
  
原因3:润滑油量不足,油质不良。


处理方法:增加油量或更换润滑油;
  
原因4:轴承装配不良。


处理方法:按要求检查轴承装配情况,消除不合要求因素;
  
原因5:冷却水断路。


处理方法:检查、修理;
  
原因6:轴承磨损或松动。


处理方法:修理轴承或报废。若松协,复紧有关螺栓;


原因7:泵轴弯曲。


处理方法:矫正泵轴;
  
原因8:甩油环变形,甩油环不能转动,带不上油。


处理方法:更新甩油环;
  
原因9:联轴器对中不良或轴向间隙太小。


处理方法:检查对中情况和调整轴向间隙。




8
轴封发热




原因1:填料压得太紧或磨擦。


处理方法:放松填料,检查水封管;
  
原因2:水封圈与水封管错位。


处理方法:重新检查对准;
  
原因3:冲洗、冷却不良。


处理方法:检查冲洗冷却循环管;
  
原因4:机械密封有故障。


处理方法:检查机械密封。




9
转子窜动大




原因1:操作不当,运行工况远离泵的设计工况。


处理方法:严格操作,使泵始终在设计工况附近运行;
  
原因2:平衡不通畅。


处理方法:疏通平衡管;
  
原因3:平衡盘及平衡盘座材质不合要求。


处理方法:更换材质符合要求的平衡盘及平衡盘座。


延伸阅读


泵行业标准明细表—值得收藏


泵行业现行标准目录

序号

标准代号

标准名称

代替标准

1

GB/T3214-2007

水泵流量的测定方法

GB/T3214-1991

2

GB/T3215-2007

石油、重化学和天然气工业用离心泵

GB/T3215-1982

3

GB/T3216-2005

回转式动力泵 水力性能验收试验1级和2

GB/T3216-1989

4

GB/T5656-2008

离心泵技术条件(Ⅱ类)

GB/T5656-1994

5

GB/T5657-1995

离心泵技术条件(Ⅲ类)


6

GB/T5660-1985

轴向吸入离心泵、底座尺寸和安装尺寸


7

GB/T5661-2004

轴向吸入离心泵—机械密封和软填料用空腔尺寸

GB/T5661-1985

8

GB/T5662-1985

轴向吸入离心泵(16bar)标记、性能和尺寸


9

GB/T7021-1986

离心泵名词术语


10

GB/T7782-2008

计量泵

GB/T7782-1996

11

GB/T7784-2006

机动往复泵 试验方法

GB/T7784-1987

12

GB/T7785-1987

往复泵分类和名词术语


13

GB/T9069-2008

往复泵噪声声功率级的测定 工程法

GB/T9069-1988

14

GB/T9234-2008

机动往复泵

GB/T9234-1997

15

GB/T10886-2002

三螺杆泵

GB/T10886-1989

GB/T10887-1989

16

GB/T13006-1991

离心泵、混流泵和轴流泵 汽蚀余量


17

GB/T13007-1991

离心泵效率


18

GB/T13008-2010

混流泵、轴流泵 技术条件

GB/T13008-1991

19

GB/T13364-2008

往复泵机械振动测试方法

GB/T13364-1992

20

GB/T13929-2010

水环真空泵和水环压缩机 试验方法

GB/T13929-1992

21

GB/T13930-2010

水环真空泵和水环压缩机 气量测定方法

GB/T13930-1992

22

GB/T14794-2002

蒸汽往复泵

GB/T9235-1988

GB/T14794-1993

23

GB/T16907-1997

离心泵技术条件(Ⅰ类)


24

GB/T18149-2000

离心泵、混流泵和轴流泵 水力性能试验规范精密级


25

GB19762-2005

清水离心泵能效限定值及节能评价值


26

GB/T19840-2005

回转式容积泵 技术要求



表1(续)

序号

标准代号

标准名称

代替标准

27

GB/T25140-2010

无轴封回转动泵 技术条件(Ⅱ类)


28

GB/T25141-2010

自吸式回转动力泵 型式与基本参数


29

GB/T 26115-2010

离心式 纸浆泵


30

GB/T 26116-2010

内燃机共轴泵 试验方法


31

GB/T 26117-2010

微型电泵 试验方法


32

JB/T1050-2006

单级双吸离心泵 型式与基本参数

JB/T1050-1993

33

JB/T1051-2006

多级离心泵 型式与基本参数

JB/T1051-1993

34

JB/T3564-2006

长轴离心深井泵 型式与基本参数

JB/T35641993

35

JB/T3565-2006

长轴离心深井泵 效率

JB/T3565-1993

36

JB/T4297-2008

泵产品涂漆 技术条件

JB/T4297-1992

37

JB/T5413-2007

混流泵、轴流泵开式叶片 验收技术条件

JB/T5413-1991

38

JB/T5415-2000

微型离心泵


39

JB/T6434-2010

输油齿轮泵

JB/T6434-1992

40

JB/T6435.1-2006

小型多级离心泵 型式与基本参数

JB/T6435.1-1992

41

JB/T6534-2006

离心式污水泵 型式与基本参数

JB/T6534-1992

42

JB/T6537-2006

管道式离心油泵 型式与基本参数

JB/T6537-1992

43

JB/T6538-2008

往复式增压泵

JB/T6538-1992

44

JB/T6878-2006

管道式离心泵

JB/T6878.1-1993

JB/T6878.1-1993

45

JB/T6879-2008

离心泵铸件过流部件尺寸公差

JB/T6879-1993

46

JB/T6880.1-1993

泵用灰铸铁件


47

JB/T6880.2-2008

泵用铸钢件

JB/T6880.2-1993

48

JB/T6880.3-1993

泵用抗磨白口铸铁件


49

JB/T6881-2006

泵可靠性测定试验

JB/T6881-1993

50

JB/T6882-2006

泵可靠性验证试验

JB/T6882-1993

51

JB/T6883-2006

大、中型立式轴流泵 型式与基本参数

JB/T6883-1993

52

JB/T6884-2010

液下式离心泵 型式与基本参数

JB/T6884-1993


表1(续)

序号

标准代号

标准名称

代替标准

53

JB/T6912-2008

泵产品零件无损检测 磁粉探伤

JB/T6912-1993

54

JB/T6913-2008

泵产品清洁度

JB/T6913-1993

55

JB/T7255-2007

水环真空泵和水环压缩机

JB/T7255-1994

56

JB/T7256-1994

自吸离心泵 型式与基本参数


57

JB/T7742-1995

小型磁力传动离心泵


58

JB/T7743-1995

旋涡泵


59

JB/T8059-2008

高压锅炉给水泵 技术条件

JB/T8059-1996

60

JB/T8091-1998

螺杆泵 试验方法


61

JB/T8096-1998

离心式渣浆泵


62

JB/T8097-1999

泵的振动测量与评价方法


63

JB/T8098-1999

泵的噪声测量与评价方法


64

JB/T8099-1999

油田用转子式稠油泵


65

JB/T8644-2007

单螺杆泵

JB/T8644-1997

66

JB/T8645-1997

潜水螺杆泵


67

JB/T8687-1998

泵类产品 抽样检查


68

JB/T8688-1998

塑料离心泵


69

JB/T8697-1998

隔膜泵


70

JB/T8857-2000

离心式潜污泵


71

JB/T9087-1999

油田用往复式油泵、注水泵

ZBJ71005-1998

ZBJ71019 -1989

72

JB/T9088-1999

往复式杂质泵

ZBJ71006 -1988

73

JB/T9089-1999

试压泵

ZBJ71012~015-1989

74

JB/T9090-1999

容积泵零部件液压与渗漏试验

ZBJ71018-1990

75

JB/T10378-2002

固定式消防泵


76

JB/T10459-2004

滑片泵


77

JB/T11007-2010

高剪切匀浆泵、乳化泵


78

JB/T11008-2010

高速部分流泵



延伸阅读


全面解析水泵的类型、用途及原理

1-水泵的定义

通常把提升液体、输送液体或使液体增加压力,即把原动机的机械能变为液体能量从而达到抽送液体目的的机器统称为泵。


2-水泵的工作原理

1、容积式泵:利用工作腔容积周期变化来输送液体。

2、叶片泵:利用叶片和液体相互作用来输送液体。


3-泵的具体用途

泵具有不同的用途,不同的输送液体介质,不同的流量、扬程的范围,因此,它的结构形式当然也不一样,材料也不同,概括起来,大致可以分为:

1、城市供水2、污水系统3、土木、建筑系统4、农业水利系统5、电站系统6、化工系统7、石油工业系统8、矿山冶金系统9、轻工业系统10、船舶系统


4-水泵类型分类

(一)根据泵的工作原理划分:

1、离心泵2、旋涡泵3混流泵、4、轴流泵、5、电动泵6、蒸汽泵7、齿轮泵8、螺杆泵9、罗茨泵、10、滑片泵11、喷射泵12、升液泵13、电磁泵14、潜水泵等

(二)根据用途划分:

1、清水泵、2、渣浆泵3、排污泵4、化工泵5、输油泵等

(三)其他划分方法:

水泵还有其他很多划分方法:根据叶轮是否串联分为单级和多级泵;根据水泵吸入口的是一个还是两个分为单吸泵和双吸泵等等。

◆◆◆


【磁悬浮潜水电泵】


磁悬浮潜水电泵它实现了世界潜水电泵领域重大突破,有效解决了传统潜水电泵的种种弊端:如转换效率偏低、耗电过高、扬程受限、轴承易损、检修频繁等。广泛应用于工矿企业的供排水、农田灌溉及高原、山区供水等领域。


磁悬浮潜水电泵它以独有的专利技术改变了潜水电泵的制造工艺,转换效率达到令人震惊的新水平,创造了巨大节能降耗效益。


磁悬浮潜水电泵解决了制约世界潜水电泵领域发展的轴向力问题,潜水电泵的扬程有了突破性提高,填补了超高扬程(单机扬程设计到上千米)和超大流量(高承载)潜水电泵的市场空白;扬程、流量曲线趋于平缓。其转换效率、单机最高扬程均居世界领先地位。


磁悬浮潜水电泵是新一代潜水电泵,它实现了立轴磁悬浮(在不同工况下保持高效率)、不磨损,使用时间及检修周期延长数倍,省去频繁的定期检修工作,可连续运转数万小时,节省维修、检修费用。


磁悬浮潜水电泵通过了国家级试验室、山东省泵类产品质量检测中心检测。试验数据证明,磁悬浮潜水电泵的转换效率超过传统潜水电泵,用户使用情况结合实验数据及领域内对比,进一步证明其高效节能、转换效率世界领先、单机扬程世界领先及高承载、超大流量、免检修、长寿命等特点!


◆◆◆

水泵六大常见故障及解决方法


1.无法启动

首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是水泵自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。


2.配套动力电动机过热

原因有四。一是电源方面的原因:电压偏高或偏低,在特定负载下,若电压变动范围应在额定值的+10%至-5%之外会造成电动机过热;电源三相电压不对称,电源三相电电压相间不平衡度超过5%,会引绕组过热;缺相运行,经验表明农用电动机被烧毁85%以上是由于缺相运行造成的,应对电动机安装缺相保护装置。二是水泵方面的原因:选用动力不配套,小马拉大车,电动机长时间过载运行,使电动机温度过高;启动过于频繁、定额为短时或断续工作制的电动机连续工作。应限制启动次数,正确选用热保护,按电动机上标定的定额使用。三是电动机本身的原因:接法错误,将△形误接成Y形,使电动机的温度迅速升高;定子绕组有相间短路、匝间短路或局部接地,轻时电动机局部过热,严重时绝缘烧坏;鼠笼转子断条或存在缺陷,电动机运行1至2小时,铁芯温度迅速上升;通风系统发生故障,应检查风扇是否损坏,旋转方向是否正确,通风孔道是否堵塞;轴承磨损、转子偏心扫膛使定转子铁心相擦发出金属撞击声,铁芯温度迅速上升,严重时电动机冒烟,甚至线圈烧毁。四是工作环境方面的原因:电动机绕组受潮或灰尘、油污等附着在绕组上,导致绝缘降低。应测量电动机的绝缘电阻并进行清扫、干燥处理;环境温度过高。当环境温度超过35℃时,进风温度高,会使电动机的温度过高,应设法改善其工作环境。如搭棚遮阳等。注意:因电方面的原因发生故障,应请获得专业资格证书的电工维修,一知半解的人不可盲目维修,防止人身伤害事故的发生。


3.水泵发热

原因:轴承损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。


4.流量不足

这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。


5.吸不上水

原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧螺丝。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下0.5m。


6.剧烈震动

主要有以下几个原因:电动转子不平衡;联轴器结合不良;轴承磨损弯曲;转动部分的零件松动、破裂;管路支架不牢等原因。可分别采取调整、修理、加固、校直、更换等办法处理。

上述情况是造成水泵故障的常见原因,并不是全部原因,实践中处理故障,因实际分析,应遵循先外后里的原则,切莫盲目操作。


◆◆◆

水泵的汽蚀现象

水泵的汽蚀是由水的汽化引起的,所谓汽化就是水由液态转化为汽态的过程。水的汽化与温度和压力有一定的关系,在一定压力下,温度升高到一定数值时,水才开始汽化;如果在一定温度下,压力降低到一定数值时,水同样也会汽化,把这个压力称为水在该温度下的汽化压力。如果在流动过程,某一局部地区的压力等于或低于与水温相对应的汽化压力时,水就在该处发生汽化。汽化发生后,就会形成许多蒸汽与气体混合的小汽泡。当汽泡随同水流从低压区流向高压区时,汽泡在高压的作用下破裂,高压水以极高的速度流向这些原汽泡占有的空间,形成一个冲击力。金属表面在水击压力作用下,形成疲劳而遭到严重破坏。因此我们把汽泡的形成、发展和破裂以致材料受到破坏的全部过程,称为汽蚀现象。


水泵振动原因分析导致机组和泵房建筑物产生振动的原因较多,有些因素之间既有联系又相互作用,概括起来主要有以下四个方面的原因。


1.电气方面

电机是机组的主要设备,电机内部磁力不平衡和其它电气系统的失调,常引起振动和噪音。如异步电动机在运行中,由定转子齿谐波磁通相互作用而产生的定转子间径向交变磁拉力,或大型同步电机在运行中,定转子磁力中心不一致或各个方向上气隙差超过允许偏差值等,都可能引起电机周期性振动并发出噪音。


2.机械方面

电机和水泵转动部件质量不平衡、粗制滥造、安装质量不良、机组轴线不对称、摆度超过允许值,零部件的机械强度和刚度较差、轴承和密封部件磨损破坏,以及水泵临界转速出现与机组固有频率一直引起的共振等,都会产生强烈的振动和噪音。


3.水力方面

水泵进口流速和压力分布不均匀,泵进出口工作液体的压力脉动、液体绕流、偏流和脱流,非定额工况以及各种原因引起的水泵汽蚀等,都是常见的引起泵机组振动的原因。水泵启动和停机、阀门启闭、工况改变以及事故紧急停机等动态过渡过程造成的输水管道内压力急剧变化和水锤作用等,也常常导致泵房和机组产生振动。


4.水工及其它方面

机组进水流道设计不合理或与机组不配套、水泵淹没深度不当,以及机组启动和停机顺序不合理等,都会使进水条件恶化,产生漩涡,诱发汽蚀或加重机组及泵房振动。采用破坏虹吸真空断流的机组在启动时,若驼峰段空气挟带困难,形成虹吸时间过长;拍门断流的机组拍门设计不合理,时开时闭,不断撞击拍门座;支撑水泵和电机的基础发生不均匀沉陷或基础的刚性较差等原因,也都会导致机组发生振动。

◆◆◆

水泵的选择

用户选择水泵时,最好是到农机部门认可的销售点,一定要认清生产厂家。建议优先考虑购买充水式潜水电泵,并且看清牌号和产品质量合格证。千万不能购买"三无"(即无生产厂家、无生产日期、无生产许可证)产品,否则出现了问题,用户将束手无策。

作为用户,由于受到专业知识的局限,很难定夺,最好的方法是咨询水泵方面的行家,还不妨去咨询一些老的水泵用户,尤其是那些与自己使用条件相近者,买这些用户信得过、质量可靠而又比较成熟的产品,不失为一种明智的选择。同时,应根据当地的电源情况来决定用单相泵或三相泵。


2.选择满足扬程要求的水泵

所谓扬程是指所需扬程,而并不是提水高度,明确这一点对选择水泵尤为重要。水泵扬程大约为提水高度的1.15~1.20倍。如某水源到用水处的垂直高度20米,其所需扬程大约为23~24米。

选择水泵时应使水泵铭牌上的扬程最好与所需扬程接近,一般偏差不超过20%,这样的情况下,水泵的效率最高,也比较节能,使用会更经济。如果铭牌上扬程远远小于所需扬程,水泵往往不能满足用户的需要,即便能抽上水来,水量也小得可怜。但反过来,高扬程的水泵用于低扬程时,便会出现流量过大,导致电机超载,若长时间运行,电机温度升高,绕组绝缘层便会逐渐老化,甚至烧毁电机。


3.选择流量合适的水泵

水泵的流量,即出水量,一般不宜选得过大,否则会增加购买水泵的费用。应按需选用,如用户家庭使用的自吸式水泵,流量应尽量选小一些的;如用户灌溉用的潜水泵,就可适当选择流量大一些的。


4.农用水泵的选购关键

1)要因地制宜选购水泵。常用的农用水泵有3种类型,即离心泵、轴流泵和混流泵。离心泵扬程较高,但出水量不大,适用于山区和井灌区;轴流泵出水量较大,但扬程不太高,适用于平原地区使用;混流泵的出水量和扬程介于离心泵和轴流泵之间,适用于平原和丘陵地区使用。用户要根据本地的地况、水源和提水高度进行选购。

2)要适当超标选水泵。确定水泵类型后,要考虑其经济性能,特别要注意水泵的扬程和流量及其配套动力的选择。必须注意,水泵标牌上注明的扬程(总扬程)与使用时的出水扬程(实际扬程)是有差别的,这是由于水流通过输水管和管路附近时会有一定的阻力损失。所以,实际扬程一般要比总扬程低10%-20%,出水量也相应减少。因此,实际使用时,只能按标牌所注扬程和流量的80%~90%估算,水泵配套动力的选择,可按标牌上注明的功率选择,为了使水泵启动迅速和使用安全,动力机的功率也可略大于水泵所需功率,一般高出10%左右为宜;如果已有动力,选购水泵时,则可按动力机的功率选购与之相配套的水泵。

3)要严格手续购水泵。选购时要审验"三证",即农业机械推广许可证、生产许可证和产品检验合格证,只有三证齐全方能避免购置淘汰产品及劣质产品。

◆◆◆

水泵的参数

1、流量Q

流量是泵在单位时间内输送出去的液体量(体积或质量)。

体积流量用Q表示,单位是:m3/s,m3/h,l/s等。

质量流量用Qm表示,单位是:t/h,kg/s等。

质量流量和体积流量的关系为:

Qm=ρQ

式中ρ--液体的密度(kg/m3,t/m3),常温清水ρ=1000kg/m3。

2、扬程H

扬程是水泵所抽送的单位重量液体从泵进口处(泵进口法兰)到泵出口处(泵出口法兰)能量的增值。也就是一牛顿液体通过泵获得的有效能量。其单位是N.m/N=m,即泵抽送液体的液柱高度,习惯简称为米。

3、转速n

转速是泵轴单位时间的转数,用符号n表示,单位是r/min。

4、汽蚀余量NPSH

汽蚀余量又叫净正吸头,是表示汽蚀性能的主要参数。汽蚀余量国内曾用Δh表示。

5、功率和效率

水泵的功率通常是指输入功率,即原动机传支泵轴上的功率,故又称为轴功率,用P表示;

泵的有效功率又称输出功率,用Pe表示。它是单位时间内从泵中输送出去的液体在泵中获得的有效能量。

因为扬程是指泵输出的单位重液体从泵中所获得的有效能量,所以,扬程和质量流量及重力加速度的乘积,就是单位时间内从泵中输出的液体所获得的有效能量--即泵的有效功率:

Pe=ρgQH(W)=γQH(W)

式中ρ--泵输送液体的密度(kg/m3);

γ--泵输送液体的重度(N/m3);

Q--泵的流量(m3/s);

H--泵的扬程(m);

g--重力加速度(m/s2)。

轴功率P和有效功率Pe之差为泵内的损失功率,其大小用泵的效率来计量。泵的效率为有效功率和轴功率之比,用η表示。

什么叫流量?用什么字母表示?如何换算?

单位时间内泵排出液体的体积叫流量,流量用Q表示,计量单位:立方米/小时(m3/h),升/秒(l/s),L/s=3.6m3/h=0.06m3/min=60L/min

G=QρG为重量ρ为液体比重

例:某台泵流量50m3/h,求抽水时每小时重量?水的比重ρ为1000公斤/立方米。

解:G=Qρ=50×1000(m3/h.kg/m3)=50000kg/h=50t/h

什么叫扬程?用什么字母表示?用什么计量单位?和压力的换算及公式?

单位重量液体通过泵所获得的能量叫扬程。泵的扬程包括吸程在内,近似为泵出口和入口压力差。扬程用H表示,单位为米(m)。泵的压力用P表示,单位为Mpa(兆帕),H=P/ρ.如P为1kg/cm2,则H=(lkg/cm2)/(1000kg/m3)H=(1kg/cm2)/(1000公斤/m3)=(10000公斤/m2)/1000公斤/m3=10m1Mpa=10kg/cm2,H=(P2-P1)/ρ(P2=出口压力P1=进口压力)

什么叫汽蚀余量?什么叫吸程?各自计量单位表示字母?

水泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。单位用米标注,用(NPSH)r。吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)

标准大气压能压管路真空高度10.33米。

例如:某泵必需汽蚀余量为4.0米,求吸程Δh?

解:Δh=10.33-4.0-0.5=5.83米

◆◆◆

多功能水泵控制阀标准

现将标准技术要求介绍如下:

1压力--温度度级

多功能水泵控制阀的压力--温度等级由壳体、内件及控制管系统材料的压力--温度等级确定。多功能水泵控制阀在某一温度下的最大允许工作压力取壳体、内件及控制管系统材料在该温度下最大允许工作压力值中的小值。

1.1铁制壳体的压力--温度等级应符合GB/T17241.7的规定。

1.2钢制壳体的压力--温度等级应符合GB/T9124的规定。

1.3对于GB/T17241.7、GB/T9124未规定压力--温度等级的材料,可按有关标准或设计的规定。

2阀体

2.1阀体法兰

法兰应与阀体整体铸成。铁制法兰的型式和尺寸应符合GB/T17241.6的规定,技术条件应符合GB/T17241.7的规定;钢制法兰的型式和尺寸应符合GB/T9113.1的规定,技术条件应符合GB/T9124的规定。

2.2阀体结构长度见表1。

2.3阀体的最小壁厚

铸铁件阀体的最小壁厚应符合GB/T13932-1992中表3的规定,铸钢件阀体的最小壁厚应符合JB/T8937-1999中表1的规定。

3阀盖膜片座

3.1阀盖与膜片座、膜片座与阀体的连接型式应采用法兰式。

3.2膜片座与阀体的连接螺栓数量不得少于4个。

3.3阀盖与膜片座的最小壁厚按2.3的要求。

3.4阀盖与膜片座的法兰应为圆形。法兰密封面的型式可采用平面式、突面式或凹凸式。

4阀杆、缓闭阀板、主阀板

4.1缓闭阀板与阀杆应连接紧固、可靠。

4.2缓闭阀板与主阀板的密封型式应采用金属密封的型式。

4.3主阀板与阀杆必须滑动灵活、可靠。

4.4主阀板与主阀板座的密封可采用金属密封和非金属密封两种型式。

5膜片

5.1膜片性能应符合表2(见下页)的规定。

5.2膜片的外观质量应符合HG/T3090的规定。

5.3当应用于生活饮用水时,膜片材料的安全性应符合GB/T17219的规定。

6控制管系统

控制管系统的各元件应能承受阀门的最高工作压力,各部位不得发生泄漏。

7材料

7.1主要零部件材料的选用宜按JB/T5300的规定。

7.2铜合金铸件应符合GB/T12225的规定;灰铸铁铸件应符合GB/T12226的规定,其抗拉强度应不小于200MPa;球墨铸铁铸件应符合GB/T12227的规定;碳素钢铸件应符合GB/T12229的规定;奥氏体钢铸件应符合GB/T12230的规定。

7.3钢制多功能水泵控制阀铸件外观质量应符合JB/T7927的规定,铁制多功能水泵控制阀铸件外观质量参照JB/T7927的规定。

8壳体强度

多功能水泵控制阀的壳体强度应符合GB/T13927的规定。

9密封性能

多功能水泵控制阀的密封性能应符合GB/T13927的规定。

10清洁度

多功能水泵控制阀的清洁度应符合JB/T7748的规定。

11涂装

当应用于生活饮用水时,多功能水泵控制阀内腔涂装材料的安全性应符合GB/T17219的规定。外表面涂装不作规定,特殊要求在订货合同中注明。


来源:水博网、流体机械在线、暖通空调在线


免责声明:本文系网络转载,版权归原作者所有。但因转载众多,或无法确认真正原始作者,故仅标明转载来源,如涉及作品版权问题,请与我们联系,我们将在第一时间协商版权问题或删除内容!内容为作者个人观点,并不代表本公众号赞同其观点和对其真实性负责。 







友情链接

Copyright © 2023 All Rights Reserved 版权所有 天津排污泵价格虚拟社区